Recent compelling evidence suggests a role of vitamin D deficiency in the pathogenesis of insulin resistance and insulin secretion derangements, with a consequent possible interference with type 2 diabetes mellitus. The mechanism of this link is incompletely understood. In fact, vitamin D deficiency is usually detected in obesity in which insulin resistance is also a common finding. The coexistence of insulin resistance and vitamin D deficiency has generated several hypotheses. Some cross-sectional and prospective studies have suggested that vitamin D deficiency may play a role in worsening insulin resistance; others have identified obesity as a risk factor predisposing individuals to exhibit both vitamin D deficiency and insulin resistance. The available data from intervention studies are largely confounded, and inadequate considerations of seasonal effects on 25(OH)D concentrations are also a common design flaw in many studies. On the contrary, there is strong evidence that obesity might cause both vitamin D deficiency and insulin resistance, leaving open the possibility that vitamin D and diabetes are not related at all. Although it might seem premature to draw firm conclusions on the role of vitamin D supplementation in reducing insulin resistance and preventing type 2 diabetes, this manuscript will review the circumstances leading to vitamin D deficiency and how such a deficiency can eventually independently affect insulin sensitivity.
Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes.
Objective:
Clinical evidences reported subclinical alterations of thyroid function in obesity, although the relationship between thyroid status and obesity remains unclear. We cross-sectionally investigated the influence of metabolic features on hypothalamic–pituitary–thyroid axis in obesity.
Design and Methods:
We enrolled 60 euthyroid subjects with no history of type 2 diabetes mellitus and assessed the relationship of thyroid function with insulin resistance, measured using euglycemic clamp, and abdominal fat volume, quantified by computed tomography scan (CT scan). Thyroid stimulating hormone (TSH) correlated with BMI (r = 0.46; P = 0.02), both visceral (r = 0.58; P = 0.02) and subcutaneous adipose tissue volumes (r = 0.43; P = 0.03) and insulin resistance (inverse relationship with insulin sensitivity–glucose uptake: r = −0.40; P = 0.04).
Results:
After performing multivariate regression, visceral adipose tissue volume was found to be the most powerful predictor of TSH (β = 3.05; P = 0.01), whereas glucose uptake, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, subcutaneous adipose tissue volume, and triglycerides were not. To further confirm the hypothesis that high-normal TSH values could be dependent on adipose tissue, and not on insulin resistance, we restricted our analyses to moderately obese subjects’ BMI ranging 30-35 kg/m2. This subgroup was then divided as insulin resistant and insulin sensitive according to the glucose uptake (≤ or >5 mg·kg−1·min−1, respectively). We did not find any statistical difference in TSH (insulin resistant: 1.62 ± 0.65 µU/ml vs. insulin sensitive: 1.46 ± 0.48; P = not significant) and BMI (insulin resistant: 32.2 ± 1.6 kg/m2 vs. insulin sensitive: 32.4 ± 1.4; P = not significant), thus confirming absence of correlation between thyroid function and insulin sensitivity per se.
Conclusion:
Our study suggests that the increase in visceral adipose tissue is the best predictor of TSH concentration in obesity, independently from the eventual concurrent presence of insulin resistance.
NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1–3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.